Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612184

RESUMO

The Al-Mn alloy heat exchanger fin production process includes a brazing treatment at s high temperature of 600 °C, in which coarse grains are preferred for their high resistance to deformation at elevated temperatures by decreasing the grain boundary sliding. In this study, Al-1.57Mn-1.57Zn-0.58Si-0.17Fe alloy foils cold rolled by 81.7% (1.1 mm in thickness) and 96.5% (0.21 mm in thickness) were annealed at 100-550 °C for 1 h to investigate their recrystallization behavior, grain sizes, and precipitates by increasing the annealing temperature, using micro-hardness measurement, electron back-scattered diffraction (EBSD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The micro-hardness results showed that the recrystallization finishing temperatures for the two samples were almost the same, 323 ± 2 °C. The EBSD results showed that when the annealing temperature decreased from 550 to 400 °C, the recrystallized grain sizes of the two samples were nearly identical-both increased slightly. Further decreasing the annealing temperature from 400 to 330 °C caused the grain sizes to increase more, with the thinner foil sample having a more significant increase. The SEM and TEM observations showed that the micron-sized primary-phase remained unchanged during the annealing process. The nano-sized secondary phase precipitates formed during the hot-rolling process experienced a coarsening and dissolving process upon annealing. The particle size of the secondary phase increased from 32 nm to 44 nm and the area fraction decreased from 4.2% to 3.8%. The nucleation analysis confirmed that the large primary-phase could act as a nucleation site through particle stimulated nucleation (PSN) mode. The relatively dense secondary phase precipitates with small sizes at lower temperatures could provide higher Zener drag to the grain boundaries, leading to fewer nuclei and thereafter coarser grains. The coarsening of the recrystallized grains in the foils could be implemented through thickness reduction and/or precipitation processes to form densely distributed nano-sized precipitates.

2.
Materials (Basel) ; 16(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37959633

RESUMO

A novel Al-Mg-Si aluminum alloy with the addition of the micro-alloying element Er and Zr that was promptly quenched after extrusion has been studied. The solid solution and aging treatment of the novel alloy are studied by observing the microstructure, mechanical properties, and strengthening mechanism. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques are employed to examine the changes in the microstructure resulting from various solid solution treatments and aging treatments. The best strengthening effect can be achieved when the solubility of the MgSi phase and precipitate ß″ (Mg2Si phase) is at their maximum. The addition of Er and Zr elements promotes the precipitation of the ß″ phase and makes the b″ phase more finely dispersed. The aging strengthening of alloys is a comprehensive effect of the dislocation cutting mechanism and bypass mechanism, the joint effect of diffusion strengthening of Al3(Er,Zr) particles and the addition of Er and Zr elements promoting the precipitation strengthening of ß″ phases. In this paper, by adding Er and Zr elements and exploring the optimal heat treatment system, the yield strength of the alloy reaches 437 MPa and the tensile strength reaches 453 MPa after solid solution treatment at 565 °C/30 min and aging at 175 °C/10 h.

3.
Materials (Basel) ; 16(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687715

RESUMO

The nucleation and growth processes of pure Fe/pure Al intermetallic compounds (IMCs) during heat treatment at 380 °C and 520 °C were observed through in situ scanning electron microscopy (SEM). The size of the IMCs were statistically analyzed using image analysis software. The types and distribution of IMCs were characterized using transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD). The results showed that: at 380 °C, the primary phase of the Fe/Al composite intermetallic compounds was Fe4Al13, formed on the Fe side and habituated with Fe. The IMC was completely transformed from the initial Fe4Al13 to the most stable Fe2Al5, and the Fe2Al5 was the habitus with Fe during the process of holding at 380 °C for 15 min to 60 min. At 380 °C, the initial growth rate of the IMC was controlled by reaction, and the growth rate of the thickness and horizontal dimensions was basically the same as 0.02-0.17 µm/min. When the IMC layer thickness reached 4.5 µm, the growth rate of the thickness changed from reaction control to diffusion control and decreased to 0.007 µm/min. After heat treatment at 520 °C (≤20 min), the growth of IMC was still controlled by the reaction, the horizontal growth rate was 0.53 µm/min, the thickness growth rate was 0.23 µm/min, and the main phase of the IMC was the Fe2Al5 phase at 520 °C/20 min.

4.
Materials (Basel) ; 16(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36676594

RESUMO

The hot compression experiment of homogenized Al-5.2Mg-0.6Mn-0.29Zn-0.16Er-0.12Zr alloy was carried out by the Gleeble-3500 thermal simulation testing system. The deformation behavior in temperatures of 350~500 ℃ and deformation rates of 0.01~10 s-1 was studied. The relationship between stress and strain rate and deformation temperature was analyzed. The constitutive equation of alloy high-temperature deformation was constructed by the Zener-Hollomon method, and the hot working diagram with the true strain of 0.2 and 0.5 was constructed according to the dynamic material model. The research results show that flow stress has a positive correlation with strain rate and a negative correlation with temperature. The steady flow stress during deformation can be described by a hyperbolic sinusoidal constitutive equation. Adding Er and Zr into Al-Mg alloy can not only refine grains and strengthen precipitation but also form a core-shell Al3(Er, Zr) phase. In the deformation process, Al3(Er, Zr) precipitates can pin dislocations and inhibit dynamic recrystallization (DRX). Dynamic recovery (DRV) is dominant during hot deformation. The mechanism of dynamic recovery is dislocation motion. At high temperatures, Al3(Er, Zr) can also inhibit grain coarsening. The average hot deformation activation energy of the alloy is 203.7 kJ/mol. This high activation energy can be due to the pinning effect of Er and Zr precipitates. The processing map of the alloy was analyzed and combined with the observation of microstructure, the hot deformation instability zone of the alloy was determined, and the suitable process parameters for hot deformation were obtained, which were 450~480 °C, and the strain rate is 0.01~0.09 s-1.

5.
Materials (Basel) ; 15(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36431648

RESUMO

A novel Al-Cu-Zr alloy is designed in this paper, which provides a method for further improving the strength of Al-Cu alloys. In this paper, the addition of the micro-alloying element Zr in Al-Cu alloy was studied. The effect of aging treatment on the mechanical properties and precipitation behavior of the alloy was studied. With the addition of Zr, Al3Zr phases were formed in the alloy, which acts as obstacles to dislocation motion. In addition, Al3Zr phases can be used as the nucleation site of θ' phases to promote precipitation. All this can improve the strength of Al-Cu alloys. After one-step aging, corresponding to the highest hardness, the largest amount of θ' phases were observed in the alloy matrix. By contrast, after two-step aging, the θ' phases were finer, and a large amount of Guinier-Preston (GP) zones formed during the pre-aging step, which were transformed into denser and finer θ' phases in the secondary aging step. After the same solution treatment (540 °C/12 h), undergoing 120 °C/4 h + 175 °C/10 h two-step aging, the ultimate tensile strength, yield strength, and elongation of the Al-Cu-Zr alloy were 398.7 MPa, 313.3 MPa, and 7.9%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...